

TRABAJO Y ENERGIA

Energía: capacidad que tiene un sistema físico para realizar un trabajo.

Tipos: Energía Cinética: energía que tienen los cuerpos en virtud de su movimiento

$$E_c = \frac{1}{2}mv^2$$

Energía Potencial: energía que tienen los cuerpos en virtud de su posición

Ep elástica: en muelles / objetos elásticos

$$E_p = \frac{1}{2}kx^2$$
 K = constante elástica; x = deslazamiento

Ep gravitatoria: depende de la altura.

$$E_p = mgh$$
 m = masa (kg); g= gravedad; h= altura

Unidades:

Julio (J) = energía necesaria para elevar un peso de 1 N hasta 1 m sobre la superficie terrestre.

$$1J = 1Nm$$

Kilowatio hora (Kw h) 1 kw h = 3,6 10⁶ J

Energía Mecánica: es la suma de la E cinética y la E potencial. $E_m = E_c + E_p$

La energía puede transferirse entre sistemas físicos mediante trabajo o mediante calor. Por tanto ambos no son formas de energía, aunque sus unidades sean el Julio. Son formas de transferencia de energía.

Trabajo: es el producto del modulo de la fuerza (F) por el desplazamiento (Δe)

 $W = F \cdot \Delta e \cdot \cos\theta$ su unidad es el Julio (N·m)

 θ = ángulo entre fuerza y desplazamiento

Las fuerzas perpendiculares al desplazamiento no realizan trabajo.

Teorema de las Fuerzas Vivas (de la energía cinética)

El trabajo de todas las fuerzas ejercidas sobre un cuerpo (resultante) se emplea en modificar su energía cinética.

$$W_T = \Delta E_c \rightarrow W_T = E_{cf} - E_{co}$$

Principio de Conservación de la Energía Mecánica

En ausencia de rozamiento, la energía mecánica de un cuerpo se conserva

$$Sin F_R \Delta E_m = 0 \rightarrow E_{mf} = E_{mo}$$

Fuerzas Conservativas

Se dice que una fuerza es conservativa cuando el trabajo realizado para desplazar un cuerpo de un punto A hasta un punto B solo depende de las posiciones inicial y final y no del camino o trayectoria seguida.

Son fuerzas conservativas el peso, la fuerza elástica, la fuerza gravitatoria o la fuerza electrostática. La fuerza de rozamiento es una fuerza no conservativa.

El trabajo de una fuerza conservativa es igual a menos la variación de la energía potencial.

$$W_{Fc}$$
 = - ΔE_p \rightarrow W_{Fc} = - (Ep_f - Ep_o) = Ep_o - Ep_f

Principio de conservación de la energía (con fuerzas de rozamiento)

Cuando en un proceso físico intervienen fuerzas no conservativas como el rozamiento, hay una disipación de energía y por tanto, la energía inicial del sistema y la energía final no coinciden. En estos casos la variación de energía coincide con el trabajo de las fuerzas no conservativas.

$$W_{FNc} = \Delta E_m$$
 es decir $F_{Nc} \cdot \Delta e \cdot \cos \theta = E_{mf} - E_{mo}$

Potencia

Es una magnitud escalar que mide la relación entre el trabajo realizado por un cuerpo y el tiempo que tarda en realizarlo.

$$P = \frac{W}{t}$$

La unidad en el sistema internacional es el watio, pero también se utiliza el kilowatio (kw) y el Caballo de Vapor (CV)

Rendimiento

Es una magnitud que mide la relación entre la energía útil y la energía consumida por una máquina.

Se expresa en %:
$$\eta = \frac{E_u}{E_c} 100$$

También se puede expresar el rendimiento en función de la potencia: $\eta = \frac{P_u}{P_c} 100$

Como resolver problemas:

- 1. Lee cuidadosamente el enunciado del problema
- 2. Identifica la situación física que se plantea, buscando los dos estados: inicial y final.
- 3. Haz un balance de las energías en cada uno de los estados que se plantean en el problema.
- 4. Si intervienen fuerzas no conservativas, principalmente fuerzas de rozamiento, debes calcular el trabajo realizado por estas fuerzas.
- 5. Aplica el principio de conservación de la energía, teniendo en cuenta los tres términos: energía inicial, energía final y trabajo de las fuerzas no conservativas.
- 6. Recuerda las fórmulas y sustituye cada magnitud por su valor numérico, teniendo en cuenta la coherencia de las unidades. Resuelve, a continuación la ecuación que se plantea.
- 7. Interpreta físicamente el resultado.
- 8. Atento a las unidades. Procura que estén en el Sistema Internacional.