Aquí teneis una tabla de equivalencias entre una expresión coloquial y su simbología, la cual puede resultar muy útil si es consultada a menudo:

Expresión coloquial	Simbología matemática
Dado un número	X
El duplo , el doble de un número	2x
La mitad de un número	$\frac{1}{2}x; \frac{x}{2}; x:2$
Un número disminuido en	x x – 1
El antecesor , o el anterior de un número	x – 1
El sucesor, el consecuente, o el	x +1
siguiente de un número	
El opuesto de un número	- x
Números consecutivos	x; x + 1; x + 2; x + 3;
Un número par	2x
Números pares consecutivos	2x; 2x + 2; 2x + 4; 2x + 6;
Un número impar	2x +1
Números impares consecutivos	2x + 1; $2x + 3$; $2x + 5$; $2x + 7$;
El triple de un número	3x
El cuádruplo de un número	4x
La tercera parte, o el tercio de un número	$\frac{1}{3}x$; $\frac{x}{3}$; $x:3$
La cuarta parte de un número	$\frac{1}{4}x$; $\frac{x}{4}$; $x:4$
La quinta parte de un número	$\frac{1}{5}x; \frac{x}{5}; x:5$
El cuadrado de un número	x ²
El cubo de un número	x ³
El cuadrado del siguiente de un número	$(x+1)^2$
El cubo del siguiente de un número	$(x+1)^3$
La raíz cuadrada de un número	$\sqrt{\mathbf{x}}$
La raíz cúbica de un número	∛x
La raíz cuarta de un número	∜x
La razón entre dos números: división	$\frac{x}{y}$; $x : y$
El producto entre dos números: multiplicación	x - y
La diferencia entre dos números: sustracción	x - y

A modo de ejemplo:

La suma de tres números naturales consecutivos (lenguaje coloquial) es 45. ¿Cuáles son dichos números?

Procedimiento:

1.- Buscamos en la tabla cómo simbolizar números consecutivos, y nuestro problema indica tres:

- 2.- Como la operación es la suma de tres números, no necesitamos usar paréntesis
- 3.- Planteamos la ecuación:

$$x + x + 1 + x + 2 = 45$$

4..- Resolvemos la ecuación: sumamos los términos semejantes entre sí:

$$x + x + 1 + x + 2 = 45$$

$$3x + 3 = 45$$

$$3x = 45 - 3$$

$$3x = 42$$

$$x\,=\frac{42}{3}$$

$$x = 14$$

5.- Ahora conocemos el primer número, y para hallar los dos siguientes hacemos:

$$x = 14$$

$$x + 1 = 15$$

$$x + 2 = 16$$

6.- Verificamos y hacemos

$$14 + 15 + 16 = 45$$